
# **New Perspectives on Predicting Ecosystem Phenological Metrics based on Sentinel-2 satellite data**

Universiteit Antwerpen

## M. Maleki<sup>1</sup>, I. Janssens<sup>1</sup>, S. Wieneke<sup>1</sup>, J. M. Barrios<sup>2</sup>, Q. Liu<sup>3</sup>, N. Arriga<sup>1</sup>, M. Balzarolo<sup>4</sup>

### Aims

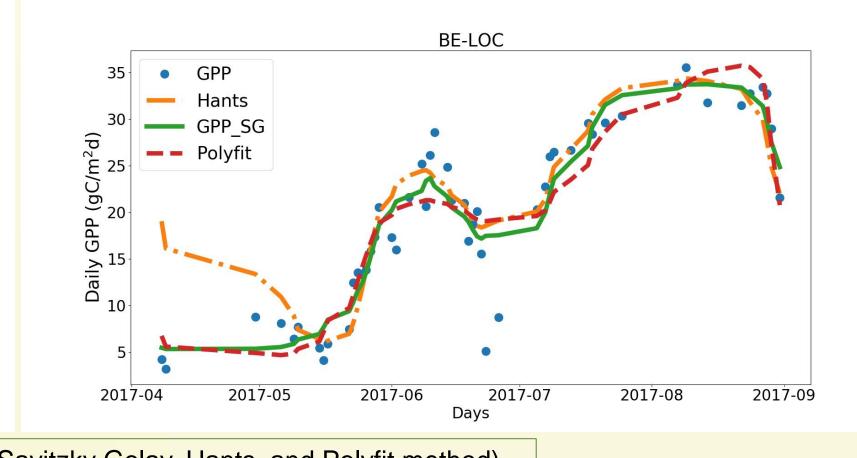
- To improve estimation of Start and End of Season (SOS/EOS) of a Poplar plantation in Belgium.
- ✤ To test several structural and chlorophyll sensitive Vegetation Indices (Vis) derived from Sentinel-2 (e.g. Modified Terrestrial Difference Vegetation Index (MTCI) & Normalized Difference Vegetation Index (NDVI)).
- To compare different Remote Sensing indices from Sentinel-2 (e.g. Pigment Specific Simple Ratio (PSSR) & Green Normalized Difference Vegetation Index (GNDVI).



WELCOM

### Data & Methods


| Vegetation Indices | Spectral bands & Calculation |  |  |  |
|--------------------|------------------------------|--|--|--|
| NDVI               | (B08-B04)/(B08+B04)          |  |  |  |
| МТСІ               | (B06-B05)/(B05-B04)          |  |  |  |

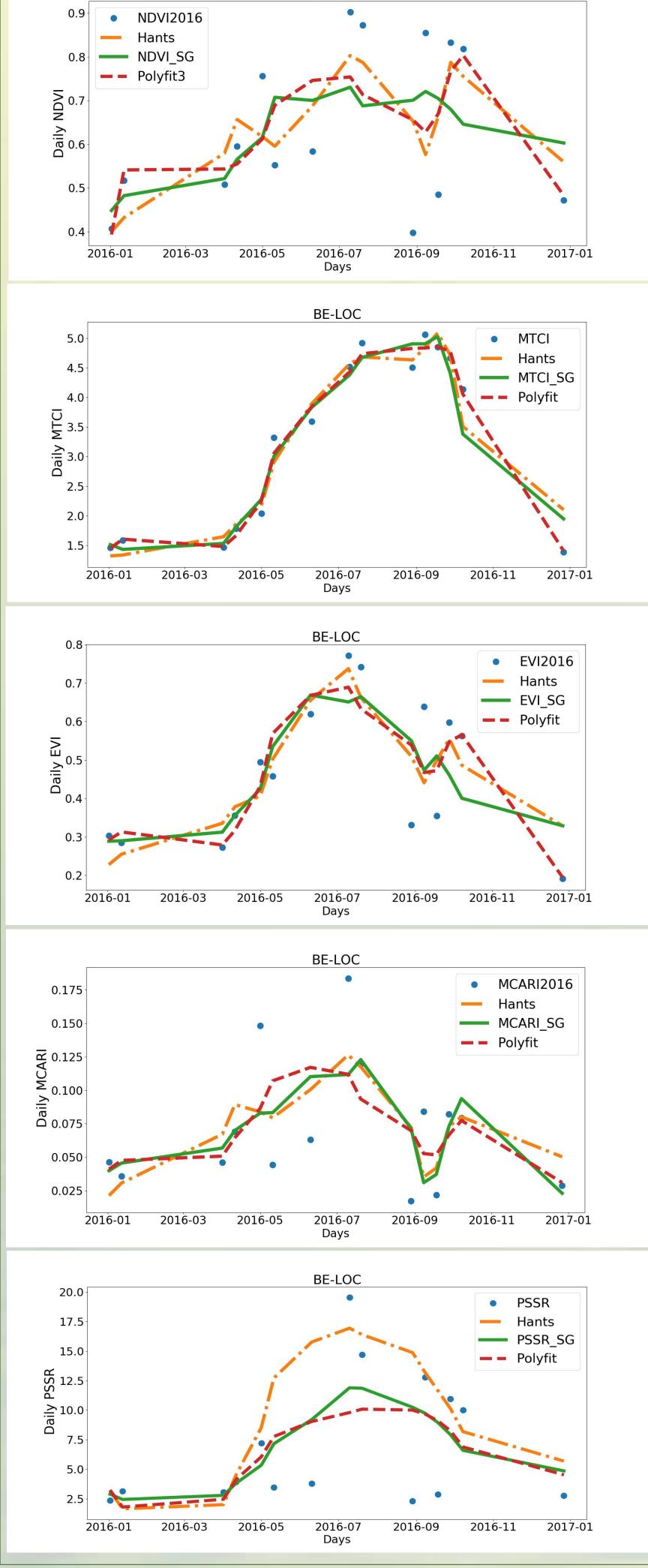

Experimental site data Flux data: Gross Primary Production (GPP), Leaf Area Index (LAI)

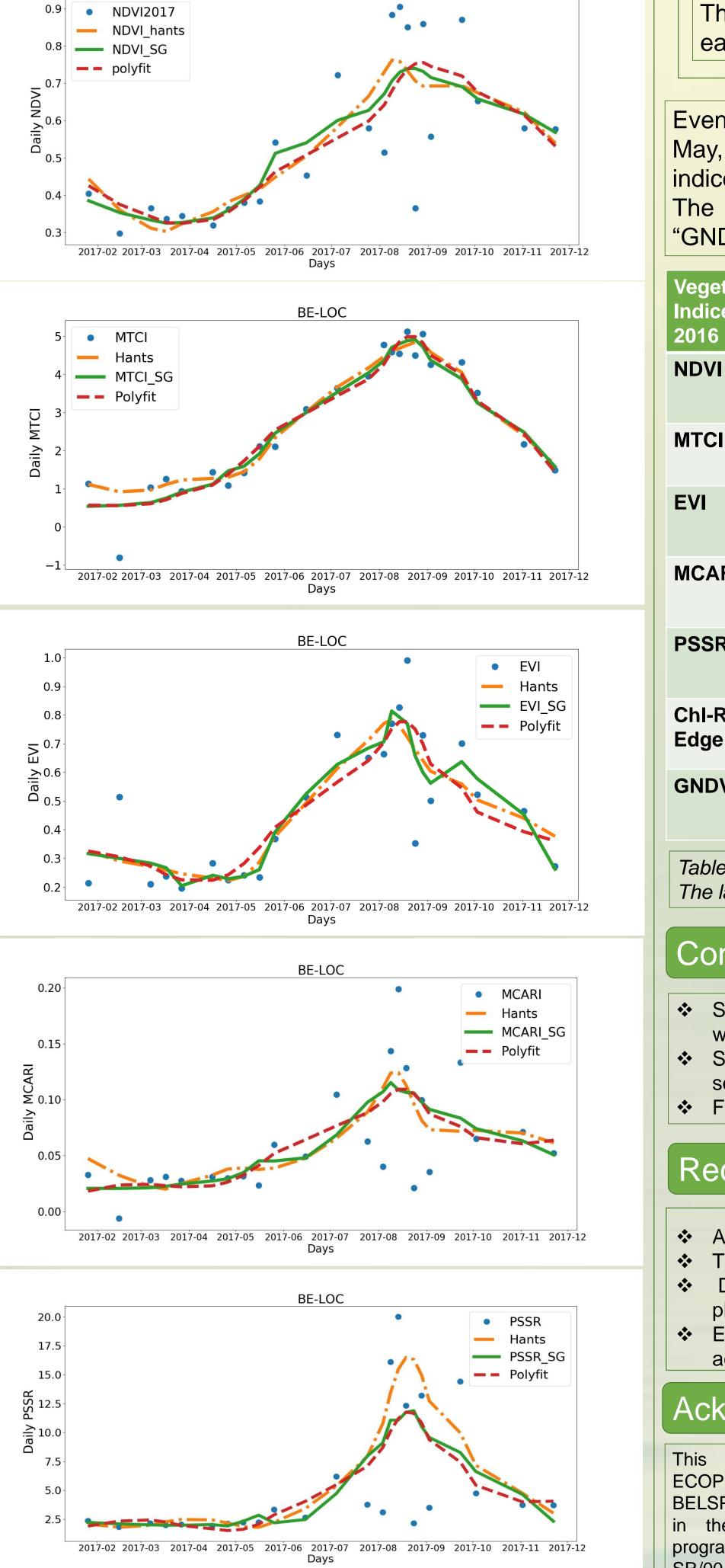
### Vegetation Indices\* Result3\*

The spectral bands of Sentinel-2 offer the opportunity to calculate VI related to pigment Contont such as MTCL

| MTCI                        | (B06-B05)/(B05-B04)                           | <ul> <li>Phenological extraction methods (Smoothing algorithm<br/>functions)</li> </ul>                                | content such as MTCI.                                                               |                                                                                                        |
|-----------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| CHL-RED-EDGE                | (B07/B05)^-1                                  | <ul> <li>Savitzky-Golay filtering method (Savgol)</li> </ul>                                                           |                                                                                     | BE-LOC                                                                                                 |
| EVI                         | 2.5*(B08 - B04)/((B08 + 6*B04 - 7.5*B02) + 1) | <ul> <li>Harmonic Analysis of time series method (Hants)</li> <li>Polynomial function (Polyfit method)</li> </ul>      |                                                                                     | 0.8<br>0.7<br>0.7                                                                                      |
| GNDVI                       | (B08-B03)/B08+B03)                            | <ul> <li>Estimating the Start and End of the Season</li> </ul>                                                         | BE-LOC                                                                              |                                                                                                        |
| MCAIR                       | ((B05-B03)-0.2*(B05-B03))*(B05/B04)           | Estimating the Start and End of the Season by comparing the VIs derived by Satellite data with First derivative method | о.б<br>абридов<br>edeudge                                                           |                                                                                                        |
| PSSR                        | B08/B04                                       | ✓ Evaluate the result                                                                                                  | Hunts                                                                               | 0.2<br>2017-02 2017-03 2017-04 2017-05 2017-06 2017-07 2017-08 2017-09 2017-10 2017-11 2017-12<br>Days |
| B2: 490nm, B3: 560nm, B4:66 | 65nm, B5:705nm, B6:740 nm, B8:842nm           | Defining which VIs are ideal proxies for vegetation phenology                                                          | ChlRedEdge_SG<br>Polyfit<br>2016-01 2016-03 2016-05 2016-07 2016-09 2016-11 2017-01 |                                                                                                        |
| GPP 2016 & 201 <sup>°</sup> | 7 *Result1*                                   |                                                                                                                        | Days                                                                                |                                                                                                        |







Each line represents smoothing method (Savitzky Golay, Hants, and Polyfit method).

### End of Length of Start of End of Length of **Start of** 2016 **GPP** 2017 Season Season Season Season Season Season 124 99 223 142 99 GPP 241 26/05/17 29/08/17 95 02/05/16 15/08/16 105 SvGI SvG Hants Hants 23/05/17 29/08/17 111 98 06/05/16 25/08/16 Polyfit Polyfit 29/08/17 105 16/08/16 16/05/17 02/05/16 106

**BE-LOC** 

**BE-LOC** 





The length of the season for GPP 2016 & 2017 are the same. But. The season starts earlier and finishes later than 2017.

Even though, the Start of the Season from all remote sensing Indices is between April and May, the End of the Season is on October 8 for three smoothing methods and for all the indices in 2016.

The only remote sensing indices that have different days for Starting the Season are "GNDVI"&"ChI-Red\_Edge". These indices show an earlier day, for all smoothing methods.

| Vegetation<br>Indices<br>2016 | Start of<br>Season<br>2016 | End of<br>Season<br>2016 | Length of<br>Season<br>2016 | Vegetation<br>Indices<br>2017 | Start of<br>Season<br>2017 | End of<br>Season<br>2017 | Length of<br>Season<br>2017 |
|-------------------------------|----------------------------|--------------------------|-----------------------------|-------------------------------|----------------------------|--------------------------|-----------------------------|
| NDVI                          | 119                        | 223                      | 104                         | NDVI                          | 139                        | 306                      | 167                         |
| MTCI                          | 119                        | 223                      | 104                         | MTCI                          | 116                        | 306                      | 190                         |
| EVI                           | 119                        | 223                      | 104                         | EVI                           | 136                        | 293                      | 157                         |
| MCARI                         | 122                        | 223                      | 101                         | MCARI                         | 79                         | 269                      | 190                         |
| PSSR                          | 95                         | 223                      | 128                         | PSSR                          | 139                        | 293                      | 153                         |
| Chl-Red-<br>Edge              | 129                        | 223                      | 94                          | Chl-Red-<br>Edge              | 26                         | 186                      | 160                         |
| GNDVI                         | 9                          | 223                      | 214                         | GNDVI                         | 126                        | 306                      | 180                         |

Table above shows the Start and End of the Season for the average of all phenological extractions methods. The last column indicates the average of the Length of the season for all three methods in 2016 and 2017.

### Conclusion

- Sentinel-2 data for Belgium in 2016 provided not enough cloud-free data to track phenological changes well. This year was exceptionally cloudy.
- Some smoothing algorithm functions fit better at the beginning of the season with the pattern of the data, some better at the end of the season.
- Finding the ideal proxy for GPP and improving the phenological changes is challenging.

### Recommendation

- Along with Sentinel-2, having data from different satellite products may help to have a better estimation.
- The more data sites we have, the better the analysis will be.
- During cloudy periods, remote Sensing products like high resolution satellite is not reliable to track phenological changes.
- Each phenological extraction method represents a different pattern. With applying more methods a more accurate result will be estimated.

### Acknowledgements

supported by study ECOPROPHET project funded by **BELSPO** (Belgian Science Policy Office) in the frame of the STEREO III (Contract number: programme SR/00/334)

