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ESA’s Earth Observation satellites A) )0LICH
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FLEX Satellite Mission will become the 8t" Earth
Explorer of ESA

FLEX will quantify actual
photosynthetic activity of
terrestrial ecosystems

FLEX will provide
physiological indicators for
vegetation health status

by direct measurements of
vegetation fluorescence at E\ T —
300x300 meters every 10-25 ‘%\,@:_ B
days ‘




The origin of fluorescence — an indicator for J JULICH

nhotosynthetic efficiency

“PHOTOSYNTHESIS”
WATER + LIGHT = CHEMICAL ENERGY

LIGHT

ENERGY 1. Chloroplasts trap 2. Water enters leaf

light energy

3. Carbon dioxide 4. Sugars and Carbo-
enters leaf through hydrates leave leaf
stomata
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» Photosynthesis is a highly regulated process that
iInvolves a cascade of electron transfers (Light
reaction) to fuel carbon fixation (Calvin cycle)

» Fluorescence is emitted from the cores of the
photosynthetic machinery: Photosystems | and Il
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» Photosynthesis is a highly regulated process that
iInvolves a cascade of electron transfers (Light
reaction) to fuel carbon fixation (Calvin cycle)

» Fluorescence is emitted from the cores of the
photosynthetic machinery: Photosystems | and Il

» Two-peak feature of fluorescence
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The origin of fluorescence — an indicator for
photosynthetic efficiency

1. Chlorophyll molecules emit fluorescence. The intensity of the fluorescence
signal is a function of light intensity and the concentration of chlorophyill

2. Additionally, the functional status of photosynthesis modulates the intensity of
the fluorescence signal




Leaf fluorescence —two photosystems and two ) JULICH
dynamically adapting signals

Biochimica et Biophysica Acta, 462 (1977) 307-313
© Elsevier/North-Holland Biomedical Press

BBA 47380

FLUORESCENCE EMISSION SPECTRA OF PHOTOSYSTEM I, PHOTO-
SYSTEM I1 AND THE LIGHT-HARVESTING CHLOROPHYLL a/b COMPLEX
OF HIGHER PLANTS

RETO J. STRASSER and WARREN L. BUTLER
Department of Bielogy, University of California, San Diego, La Jolla, Calif. 92093 (U.5.4.)
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Fluorescence techniques are the most widely J JULICH
used approaches to investigate photosynthesis

» Various leaf level instruments
available and currently ~750
Papers published per year

» Most methods use active
approaches, such as PAM,
saturating light pulses or
lasers induced fluorescence
transients

Un-quenched

7

bttt

Fulse Eg 20- 30 minutes

Rascher et al. (2010) Sensing of photosynthetic activity of
crops. In Precision Crop Protection - the Challenge and
Use of Heterogeneity. Springer Science+Business Media
B.V., doi 10.1007/978-90-481-9277-9 6.

Murchie et al. (2018) Annals of Botany, 122, 207-220
Keller et al. (2019) Photosynthesis Research, doi:
0.1007/s11120-018-0594-9.




Sun-induced fluorescence can be measured in the solar ’JJU'—'CH
and atmospheric absorption lines
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Plascyk (1975) Optical Engineering 14, 339-346

Carter et al. (1996) Remote Sensing of Environment 55, 89-92

Moya et al. (2004) Remote Sensing of Environment 91, 186-197
Meroni et al. (2009) Remote Sensing of Environment, 113, 2037-2051
Cogliati et al. (2015) Remote Sensing of Environment, 164, 270-281
Cogliati et al. (2019) Remote Sensing, doi: 10.3390/rs11161840



Steady-state fluorescence and photosynthetic o JULICH
efficiency are non-linearly related — leaf/canopy level

» Mapping of sun-induced fluorescence on
the ground to understand interplay of the
variations of light intensity within natural
canopies and the three dimensional leaf

of upper canopy

Solar noon

1
(&)
o
o

5 (b)

1
i
(=]
o

]
N
o
o

SIF760nm (MW m ™2 sr' nm™")
w
3

_ _ _ 10 11 12 13 14 15 16 17
Pinto et al. (2017) Remote Sensing, 9, 415, doi: 10.3390/rs9050415 Time of the day (hrs)



Steady-state fluorescence and photosynthetic
efficiency are non-linearly related — leaf/canopy level

A jOLICH

FORSCHUNGSZENTRUM

» Mapping of sun-induced fluorescence on
the ground to understand interplay of the
variations of light intensity within natural
canopies and the three dimensional leaf

of upper canopy
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Steady-state fluorescence and photosynthetic

efficiency are non-linearly related — leaf level
» The relationship between solar-induced
fluorescence and efficiency of "

photosynthesis is not linear

van der Tol C., Berry J.A., Campbell P.K.E. & Rascher U. (2014)
Models of fluorescence and photosynthesis for interpreting
measurements of solar-induced chlorophyll fluorescence. Journal
of Geophysical Research - Biogeosciences, 119, 2312-2327.
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The origin of fluorescence — an indicator for
photosynthetic efficiency

1. Chlorophyll molecules emit fluorescence. The intensity of the fluorescence
signal is a function of light intensity and the concentration of chlorophyill

2. Additionally, the functional status of photosynthesis modulates the intensity of
the fluorescence signal




Steady-state fluorescence and photosynthetic #) JULICH
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The origin of fluorescence — an indicator for J JULICH
nhotosynthetic efficiency

“PHOTOSYNTHESIS”
WATER + LIGHT = CHEMICAL ENERGY

» Photosynthesis is a highly regulated process that
iInvolves a cascade of electron transfers (Light
reaction) to fuel carbon fixation (Calvin cycle)

LIGHT

ENERGY 1. Chloroplasts trap 2. Water enters leaf

light energy

» Fluorescence is emitted from the cores of the
photosynthetic machinery: Photosystems | and Il

» Energy of ligh-reactions is used to biochemically fix
CO, from the atmosphere

3. Carbon dioxide 4. Sugars and Carbo-
enters leaf through hydrates leave leaf
stomata
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The origin of fluorescence — an indicator for A) )0LICH

nhotosynthetic efficiency
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» Photosynthesis is a highly regulated process that
iInvolves a cascade of electron transfers (Light
reaction) to fuel carbon fixation (Calvin cycle)

» Fluorescence is emitted from the cores of the
photosynthetic machinery: Photosystems | and Il

» Energy of ligh-reactions is used to biochemically fix
CO, from the atmosphere.

» And there are stomata... the maybe ,most important

cells on earth’ — —




Preparing for a network of ground reference J JULICH
stations

» Technical development of ground reference
Instruments has progressed

» Currently three different instruments are available,
with FloxBox (JB Hyperspectral) currently being the
most widely used (covering ~ 20 sites worldwide)

» FloxBox also included in various ESA campaigns
and basis for ground segment and Cal / Val plan

Migliavacca et al. (2017) New Phytologist, 214, 1078-1092, doi:
10.1111/nph.14437.

Wieneke et al. (2018) Remote Sensing of Environment, 219, 247-
258, doi: 10.1016/j.rse.2018.10.019




Preparing for a network of ground reference

stations

» Technical development of ground reference
Instruments has progressed

» Currently three different instruments are available,
with FloxBox (JB Hyperspectral) currently being the
most widely used (covering ~ 20 sites worldwide)

» FloxBox also included in various ESA campaigns
and basis for ground segment and Cal / Val plan

Migliavacca et al. (2017) New Phytologist, 214, 1078-1092, doi:
10.1111/nph.14437.

Wieneke et al. (2018) Remote Sensing of Environment, 219, 247-
258, doi: 10.1016/j.rse.2018.10.019

midday mean PRI

50

100

=3
=

BO

60

[
(=]

n
(=]
daily mean VWC (vol %)

daily total prec (mm})

]
=)

w o
=

w =

(V)
midday mean Frgg and Fgar
{mw m2sr-inm-1)

o MN OB o @
=

o o
o
o/

=
=
midday mean MTVI2

=
a

=
=]



Two peak feature of fluorescence is affected by A) 0LICH
reabsorption in the leaf and the canopy
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Two peak feature of fluorescence is affected by A) 0LICH
reabsorption in the leaf and the canopy
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HyPlant: A high-resolution airborne imaging spectrometer !)JULICH
with FLEX like measurement characteristics

» DUAL module (380 — 2500 nm)
VIS/NIR: 3-4 nm FWHM, 1.7 nm SSI, SNR > 510
SWIR: 13 nm FWHM, 5.5 nm SSI, SNR > 1100

» FLUO module (670 — 780 nm)
0.25 nm FWHM, 0.11 nm SSI, SNR > 250

» Various improvement and now consolidated version (HyPlant_3)

—

tn

X

a-l
11| T Tt | T I

: | ;

C
¢ =
J

DUAL module

1.0x10*

Radiance [W/cm®/sr/um]

|

th [nm]

Im Imimims

Rascher et al. (2015) Global Change
Biology, 21, 4673—-4684

Radiance [W/cm®/srjum]
o]
o
—
o

IIIiIIIlIII|III|III|III|I-[T|

| AR G T A A Pl AR

ad

o

[=]

x

—
Dcﬂuuu

g
g
g.
3
g

720
Wavelength [nm]

FLUO module




HyPlant complemented by thermal imager (TASI) and LIDAR A JOLICH

system (since 2018 campaign)

TASI-600

« Hyperspectral thermal sensor (8 — 11.5 um)
* Field of view alligned with HyPlant sensor

e Operated in synchrony with HyPlant

LIDAR (Riegl LMS-Q780)
 Long range laser scanner
« Full-waveform echo digitalization and analysis

FORSCHUNGSZENTRUM

Sensor

TASI-600

Spectral Region

LWIR

Sensor Type Pushbroom Hyperspectral TIR
Spectral Bands 32
Spectral Range [nm] 8 000 — 11 500
Number of Spatial Pixels 600
Max. Spectral Resolution [nm] 110
FOV [°] 40
IFOV [°] 0.07
Dynamic Range 14-bits (16384:1)
Burst Data Rate 5 Mpix/sec
NEDT TASI-600/32: 0.11° C @ 100° C

Sensor Riegl LMS-Q780
Max. Pulse Repetition Rate [kHz] 400
Max. Operating Altitude [m] 5800
Wavelength [nm] 1064
Max. Laser Beam Divergence [mrad] 0.25
FOV [°] 60
Eye Safety Class Laser Class 3B
Min. Operating Altitude 50m

Spectral Smile

TASI-600/32: < £0.25 pixels

Keystone Distortion

TASI-600/32: < +£0.25 pixels




HyPlant campaigns: Measuring and understanding A JULICH
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the spatial dynamics of solar-induced fluorescence

» Used to demonstrate the uncoupling of

‘greenness’ and fluorescence

[Rascher et al (2015) Global Change Biol., 21, 4673-4684]
[Simmer et al (2015) BAMS — Bulletin of the American
Meteorological Society, 96, 1765-1787]




HyPlant campaigns: Measuring and understanding
the spatial dynamics of solar-induced fluorescence

» Demonstration that functional blockage of

photosynthesis can be mapped from aircraft
[Rossini et al (2015) Geophys. Res. Lett., 42, 1632-1639]
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HyPlant campaigns: Measuring and understanding
the spatial dynamics of solar-induced fluorescence

» Fluorescence (F-4,) improves modelling of

diurnal changes in GPP
[Wieneke et al (2016) Rem Sens Environ, 184, 654-667]




HyPlant campaigns: Measuring and understanding ’JJULICH
the spatial dynamics of solar-induced fluorescence
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HyPlant campaigns: Measuring and understanding 0JULICH
the spatial dynamics of solar-induced fluorescence

» Experimental studies to better understand
the mechanisms of photosynthetic regulation

DAT (C1 and D24) -1 0 F 10 i

on the canopy scale DATCD1S 5 7 0 3 5

and D6)

[Celesti et al (2018) Rem. Sens. Environ., 215, 97-108] I, e
[Sakowska et al (2018) Plant, Cell Environ., 41, 1427-1437] oo BN | s oo ST <o




HyPlant campaigns: Measuring and understanding A J0LICH
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the spatial dynamics of solar-induced fluorescence

» Experimental studies to better understand
the mechanisms of photosynthetic regulation

DAT (C1 and D24) -1 0 F 10 i

on the canopy scale DATCD1S 5 7 0 3 5

and D6)

[Celesti et al (2018) Rem. Sens. Environ., 215, 97-108] I, e
[Sakowska et al (2018) Plant, Cell Environ., 41, 1427-1437] oo BN | s oo ST <o



HyPlant campaigns: Measuring and understanding #) 0LICH
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the spatial dynamics of solar-induced fluorescence
] ] June 30, 2015 (26°C)
» Vegetation stress during summer heat wave msr
[Yang et al (2019) Rem. Sens. Environ., doi: o
10.1016/j.rse.2018.11.039]
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HyPlant campaigns: Measuring and understanding !)JULICH
the spatial dynamics of solar-induced fluorescence

(a) Quantitative depth range average ECa maps

> Vegetation StreSS during Summer heat Wave VCPs32, DOl =0-0.2m VCPs71, DOI=0-0.5m VCPs118 DOl =0-0.9m

[Yang et al (2019) Rem. Sens. Environ., doi:
10.1016/}.rse.2018.11.039]
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HyPlant campaigns: Measuring and understanding
the spatial dynamics of solar-induced fluorescence

» Vegetation stress during summer heat wave
[Yang et al (2019) Rem. Sens. Environ., doi:
10.1016/j.rse.2018.11.039]

» Water availability of deeper soil layers are

mapped in fluorescence signal
[von Hebel et al (2018) Geophys. Res Lett., 45, ]

> Fqq reflects tree age, while F-,, is constant

In Loblolly pine stands of different age
[Middleton et al (2017) Remote Sensing, 9, article no. 612]
[Colombo et al. (2018) Global Change Biology, 24, 2980-
2996]
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HyPlant campaigns: Measuring and understanding QJULICH
the spatial dynamics of solar-induced fluorescence
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HyPlant campaigns: Measuring and understanding OJULICH
the spatial dynamics of solar-induced fluorescence

GPP (umol CO,m *5 ")
a0

» Vegetation stress during summer heat wave = === e "
[Yang et al (2019) Rem. Sens. Environ., doi: 2 o I
10.1016/j.rse.2018.11.039] R B

> Water availability of deeper soil layers are  §| 3 )
mapped in fluorescence signal
[von Hebel et al (2018) Geophys. Res Lett., 45, ] W = .

> F69O refleCtS tree age’ Whlle F74O IS ConStant 384750 385000 385250 385500 385750 - 384750 385000 385250 385500 385750 -
In Loblolly pine stands of different age e e i o o

[Middleton et al (2017) Remote Sensing, 9, article no. 612] | g
[Colombo et al. (2018) Global Change Biology, 24, 2980- ¢ I
2996] o
> Fgq- is not related with GPP and APAR; :
F-e0 IS positively, but nonlinearly related to

GPP and APAR in the spatial domain.

[Tagliabue et al. (2019) Rem. Sens. Environ., 231, article
no. 111272]
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HyPlant campaigns: Measuring and understanding f)JULICH
the spatial dynamics of solar-induced fluorescence

» Vegetation stress during summer heat wave *“ o0 com . pao0s coun
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in Loblolly pine stands of different age rz . -
[Middleton et al (2017) Remote Sensing, 9, article no. 612] _ <0001 I” el l“’
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[Colombo et al. (2018) Global Change Biology, 24, 2980- = 2
2996]

» Fgg; IS not related with GPP and APAR;
F-e0 IS pOsitively, but nonlinearly related to i ) :
GPP and APAR in the spatial domain. ———— .

[Tagliabue et al. (2019) Rem. Sens. Environ., 231, article Firo NN ) Freg (A 051" i)
no. 111272]
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» First demonstration that solar-induced
fluorescence can be monitored from

space (GOSAT aggregated data)
[Joiner et al (2011) Biogeosciences, 8, 637-651]

L ____ I I [mW/m®/sr/nm]
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Mapping solar-induced fluorescence globally

» First demonstration that solar-induced
fluorescence can be monitored from
space (GOSAT aggregated data)

[Joiner et al (2011) Biogeosciences, 8, 637-651]

» Spatial and seasonal patterns of solar-

Induced fluorescence that are related to

GPP (GOME-2 data)
[Guanter et al (2014) PNAS, 111, 1327-1333]

. (PN
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GPP Data-driven (gC/m*/d)
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0C02 nadir repeat cycle (16 days), no filter

> First demonstration that solar-induced
fluorescence can be monitored from

space (GOSAT aggregated data)
[Joiner et al (2011) Biogeosciences, 8, 637-651]

» Spatial and seasonal patterns of solar-
Induced fluorescence that are related to
GPP (GOME-2 data)

[Guanter et al (2014) PNAS, 111, 1327-1333]
» Further prospects on retrieving solar-

20 j‘“"""\““""‘\“““"‘I“‘“""\‘“"""I"““"'

Induced fluorescence from future E st
satellite missions (OCO-2 and 5
TROPOMI) I
[Frankenberg et al. (2014) Remote Sensing of > 1
Environment, 147, 1-12] oAt y=—0.88+3.55x
0 1 ) 3 4 5 6 y— 0.35+ 371X.
SIF (mW/m?/st/nm) y=-0.17+ 3.48x;

SIF / (W m™ micron™ sr']=

00 01 02 03 04 05 06 07 08 09 10 1.1 1.2

'=0.92
'=0.79
'=0.87

US croplands

Europe grasslands

Combined ‘
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Summary

1 How is solar-induced fluorescence related to photosynthetic carbon uptake? A matter of
scale and integration.

1 Two fluorescence peaks in combination with knowledge on non-photochemical
protection mechanisms allow better understanding of the regulation of photosynthesis
(stress response, seasonal adaptation, functional diversity)

1 Ground-based instruments and airborne sensors are consolidated and being employed
along the spatial scale (leaf to satellite). Preparation for Cal / Val network is ongoing

-l Integration of ground-based, airborne and satellite missions will link mechanistic
understandlng of vegetatlon function with larger scale monitoring and decision making
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